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Memory function for a fluid of molecules interacting through steeply repulsive potentials
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Previous studies of the properties of fluids of molecules interacting through steeply repulsive central poten-
tials are extended to the investigation of the memory function. It is assumed that collisions are dominated by
binary collisions and a general formula previously derived by Miyazaki, Srinivas, and Bagchi [J. Chem. Phys.
114, 6276 (2001)] is applied to the present problem. It is shown that the equations of motion of a pair of
molecules can be solved explicitly and substitution of the result into the formula leads to a closed explicit
expression for the memory function which is easily evaluated for any given state. In the limit of hard spheres
this result leads to Enskog’s equation and represents a generalization of that formula to fluids with softer
potentials. The results obtained from the formula are compared with those derived from the molecular dynam-
ics simulation. The velocity autocorrelation function was calculated using the generalized soft sphere potential,
¢(r)=e(o/r)", where € and o set the energy and size of the molecule, and the exponent, n, is a variable. The

two approaches agree very well for a range of state points for n large, especially at short times.
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I. INTRODUCTION

A longstanding goal in the theory of liquids has been that
of predicting the molecular dynamics and transport proper-
ties for a given intermolecular potential, based solely on first
principle statistical mechanical arguments. The first step in
this direction was made by Enskog, who developed a kinetic
theory of the transport coefficients of hard sphere fluids
based on the Boltzmann equation (see, e.g., Ref. [1] for a
good account). The assumptions in his theory are that each
collision is instantaneous (i.e., a delta function in time) and
independent of other previous collisions (i.e., it ignores cor-
related collision sequences), and the collision rate is propor-
tional to the local density around a given particle (measured
through the contact value of the radial distribution function).
Actually the formulas he derived for the transport coeffi-
cients are surprisingly accurate up to quite high (liquidlike)
densities, especially for the thermal conductivity [2]. Empiri-
cal correction formulas to the basic Enskog expressions
based on Molecular Dynamics computer simulation data
have been derived for the four transport coefficients (see for
example, Ref. [2]). The hard-sphere fluid is, however, some-
what pathological as far as the particle dynamics is con-
cerned [3] and of course such a potential does not exist in
nature.

There has been some success in extending Enskog’s origi-
nal treatment to arbitrary continuous potentials (see Refs.
[1,4], Secs. 2.7-2.9, for discussion of this), but an alternative
approach based on the work of Green [5] and Kubo [6] has
attracted more attention in recent years. This “Green—Kubo”
treatment expresses a transport coefficient as (apart from a
system constant) the integral of a time autocorrelation func-
tion, (1)=(A(0)A(z)), where  is time and (---) denotes an
average over time origins. The quantity A is a flux which can
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be defined at the molecular level in terms of various quanti-
ties including the intermolecular potential. Therefore knowl-
edge of the time correlation function leads automatically to
the transport coefficient. Although the interaction potential
and the relevant time correlation are implicitly linked, to date
closed analytic form solutions for arbitrary realistic poten-
tials valid at all times, have eluded us. Nevertheless, the
formally exact nature of the time correlation function ap-
proach does provide a sound basis for developing approxi-
mate solutions ¢/(z) and, hence, the transport coefficient. For
example, using projection operators for relevant and weakly
coupled degrees of freedom, it can be shown that the time
correlation function can be expressed in terms of a more
fundamental time dependent (“memory”) function, {(z), in
the form of an integrodifferential equation called the gener-
alized Langevin equation (GLE) (see e.g., Chap. 9 in Ref. [7]
and Sec. 2.6 in Ref. [4]). Indeed the memory function can
itself be expressed as a GLE, and so on as a hierarchy. A
closed expression for ¢ requires the inclusion of a specific
functional form for the memory function at some termination
stage. Normally the Laplace transform (LT) of these equa-
tions is considered, which forms a continued fraction expan-
sion to be closed at nth order by the LT of such a terminating
function. Alternatively the series can be continued indefi-
nitely by assuming a relationship between the memory func-
tions at arbitrary levels n and n+1 (see for example Refs.
[8,9]). An alternative approach is to attempt to derive an
expression for the memory function of a particular fluid from
first principles [10], and this is the approach taken in this
work.

The particular fluid we study is one consisting of “mol-
ecules” interacting through a steeply repulsive central poten-
tial. In previous publications [11], we have studied several
thermodynamic properties of such fluids which approach
those of the hard sphere fluid as the steepness rises. We find
small quantitative corrections to the hard sphere results. For
the time relaxation of various static properties and fluxes we
expect a more dramatic change as the hard sphere fluid dis-
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plays singular properties for small times (see Sec. 7.2 of Ref.
[7]). Indeed the memory function of the velocity autocorre-
lation function (VACF) of the hard sphere fluid contains a
delta function for short times (see Sec. 3.3 of Ref. [4])
whereas for continuous potentials it is analytic. We expect to
see this difference in our study.

We concentrate on the VACF, (1)=(v;(0)v;(r)), which,
via the Green—Kubo formula, gives the self-diffusion coeffi-
cient

D= (1/3)Jw Y(r)dr.
0

Our approach is based on use of Eq. (16) in [K. Miyazaki, G.
Srinivas, and B. Bagchi, J. Chem. Phys. 114, 6276 (2001)]
(referred to as MSB) given in this paper as Eq. (2.2), which
gives an explicit real time expression for the memory func-
tion in terms of the radial distribution function, g(r), the
Liouville, operator, and the pair potential. We find an ap-
proximate analytic solution for short times for steeply repul-
sive potentials, in which there is a clear separation of time
scales between the binary collision itself and subsequent col-
lisions. By solving the equations of relative motion of a pair
of particles for any initial condition, we have obtained an
explicit expression for the integrand of that expression, and
hence, the memory function. As we ignore multiparticle scat-
tering, mode coupling, and hydrodynamic effects, we expect
that our results will be accurate only for short times.

In a recent paper Dufty and Ernst [3] have reported a
calculation of the velocity and force autocorrelation func-
tions for a steeply repulsive potential. They also include only
the effect of binary collisions and express their results for
short times in terms of a scaling function. As their physical
assumptions are the same as ours, there should be a relation-
ship between their results for the correlation functions and
our results for the memory function. As they have not yet
published the full details of their calculation we have not yet
been able to establish this relationship although both produce
numerical results which agree with computer simulation. We
discuss this further in our concluding section.

II. THE MEMORY FUNCTION FOR STEEPLY REPULSIVE
POTENTIALS

When two hard spheres collide each moves freely until
the moment of collision at which time the separation of their
centers is the molecular diameter, o. After the collision the
spheres again move freely but with a momentum altered by
the collision. The collision takes place instantaneously and at
the separation, o. As was pointed out in Sec. I, one conse-
quence of this is that at short times the memory function for
a hard sphere fluid is abnormal. In fact it contains a delta
function in r whereas the expansion is normally analytic in ¢
(see Ref. [12]).

Similarly when two molecules moving with thermal
speeds interact through a steeply repulsive potential, they
will influence each other only within a short distance of an
appropriate hard sphere separation, o. The collision will take
place only over a short time and only when the separation is
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close to o. They will start to influence each other signifi-
cantly only when their separation is slightly greater than o
and they will penetrate each other slightly, i.e., their mini-
mum separation will be slightly less than o. The collision,
therefore, takes place over a short but finite time and within
a short part of their separation close to ¢. These facts enable
us to solve the equations of motion with a consistent ap-
proximation. Since the collision takes a finite, even if short,
time the expansion of the autocorrelation functions is now
normal and quadratic in z.

As stated in the introduction our approach to this problem
is through the memory function, {(¢), for a fluid. Implicitly
the memory function is related to the velocity autocorrelation
function, (). In terms of their respective Laplace trans-

forms, Z(z) and J,Z(z), the relationship is

[mz + L{(2)]¥(z) = $0),

where m is the mass of a fluid molecule. This is simply a
generalization of the Langevin equation. A formal definition
of the memory function has been given by Zwanzig [13] and
by Mori [14] but we do not need to use it here. Instead we
use a result for the memory function derived by Miyazaki,
Srivivas, and Bagchi [10]. Starting from the formal definition
of the memory function and using results due to Mazenko
and Yip [15] they derive, for a one-component fluid of mol-
ecules interacting through two-body interactions only and
with the assumption that the transport properties are domi-
nated by binary collisions, a closed expression for the
memory function. For molecules interacting through a cen-
tral intermolecular potential, ¢(r), their result can be ex-
pressed in terms of the pair distribution function of the fluid,
g(r), and of the Boltzmann distribution function for a particle
of mass m/2; their formula for the memory function in this
case is

__p 3 3 dg(r) d(x(1))
£w= 363,3 fdpfdrf(p) o arn)

(2.2)

(2.1)

where

f(p) = (mmkpT)™"* exp(— p*ImkgT). (2.3)

The vector r(z) is the radius vector between the centers of a
pair of molecules at a time ¢# when their separation and rela-
tive momentum at the initial time were r and p; it describes
their relative motion in their center-of-mass frame.

In this section we evaluate the memory function, as far as
is possible analytically, for the case of a fluid of molecules
interacting through the steeply repulsive model central po-

tential
d’(’”) = 8( )"’
r

in the limit that n becomes very large. When n— o the po-
tential becomes the hard sphere one. In the hard-sphere limit
the collision is instantaneous and the memory function is
local and as already pointed out becomes a delta function
[16]. But when # is finite the collision does take time, even if

(2.4)
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it is a short time, and we wish to see what difference this
makes to the memory function. Although we use the specific
potential as given by Eq. (2.4) in this section, it is shown in
Sec. IV that the theory applies mutatis mutandis to other
steeply repulsive potentials (SRPs).

From thermodynamics [17] and from irreversible pro-
cesses [18] it has been shown that for SRPs the optimal
choice for the diameter of the hard sphere reference fluid is
that given by the Barker—Henderson equation [17]. For the
particular potential defined by Eq. (2.4), to leading order in
1/n, this diameter is the o in the definition of the potential.

In order to evaluate the memory function from Eq. (2.2)
we need to find ¢(r(r)) by solving the equation of motion in
the center-of-mass frame of the two molecules. We provide
details of the calculation in the Appendix. The result is

d(r(1))  4exp{= At +1,sgn(cos )]}
W (1 +exp{— Hfr+1, sgn(cos ) 1)’

where ¢, is the time of closest approach of the molecules and
is defined explicitly in the Appendix by Eq. (A7).

In polar coordinates the memory function can be written
as

(2.5)

772
()=-TP

3
C wrz - " C%’_(")ﬁd’(”(l))
Xfo p dpJO dfo sin 6d6f(p) ar. o)

(2.6)

If we now retain only terms of leading order in 1/n, we can
use the approximation

dglr] d¢(r(1))
r,  Ir, (1)

- B~ bloTexal- Ao 2 (),

-
(2.7)

This expression must be substituted into Eq. (2.6) and the
integrals performed. Because the function in Eq. (2.7) is very
small except when r~ ¢ one can replace r in the integrand
by o except within the rapidly varying potential ¢(r). The
derivative d¢/dr can be exploited to change the variable of
integration from r to @(r). Also one can change variable
from 6 to p=cos 6. As a result one finds that

872 * * !
g(r)=%ﬁ"y[a] f Pdp f dg|  dufp)
0 0 -1

Xexp[- Bp(r)]¢4[R] (2.8)

with ¢(R) = ¢(r(t)) given by Eq. (2.5).
It is illuminating to replace the variables by dimensionless
ones by substituting

p = (mkgT)""P, (2.9)
d):kBTX’ (210)
H[R]=kgTx[R], (2.11)

and
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w=WikgT = P*u’* + x. (2.12)
Then
exp(= ¥1,,) = —\E = Plud (2.13)
VW + Pyl
and
x[R]= (14fj)2, (2.14)
where
A =exp{- 1+ sgn(w),,]}. (2.15)
Also
7=2n{%w}1/2. (2.16)
The final result is
(1) =cK(x), (2.17)
where
c= n4\r’77p0'y[0']kBT= n(mkgT) "l o7y, (2.18)
ST\ 12
x=2n<W> [ =yt say, (2.19)

2 0 o] 1
K(x) = 3 J P*dP f dx f dux[Rlexp(= P* - x),
0 0 -1

(2.20)

and 7 in Eq. (2.18) is Enskog’s collision time for hard
spheres of diameter o (see Ref. [19]). Hence, () is propor-
tional to the single function K(x). Earlier in this section we
interpreted y~! as the duration of an individual collision.
Likewise, we interpret 'ygl as the average duration of a col-
lision. Hence, the variable x is the time measured in units of
the average duration of a collision.

In the leading approximation in n used in this paper, {(7)
does not depend upon kgzT/e. Because y[R] is the value of
the repulsive potential at the time 7, it is positive. Hence, in
this approximation the memory function is positive at all
times. Furthermore, as is required for a continuous potential
it is analytic at short times.

III. HARD SPHERES IN THE LIMIT r — %

Miyazaki et al. [10] have already shown that £(0) and,
hence, the diffusion constant agree with Enskog’s result [12]
in the hard sphere limit of n— . We wish to show that this
is true for all values of ¢ despite the further approximations
we have made.

To demonstrate this we need to make the dependence on n
explicit. Inspection of Egs. (2.17)-(2.20) reveals that {(¢)
depends on n through factors of n in the overall constant ¢
and in x but note that x,, = vt,, is defined by Eq. (2.13) and is
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independent of n. To show the dependence on n explicitly we
write

x=ntg; a=exp(= ) =exp(-x,), (3.1)
and consider the limit
lim (nx{[R}). (3.2)
When #;#0 this is
- ntg +
. <4nw exp[— ntg + sgn(u)] 2) ~0.  (3.3)
n—o {1 + exp[— ntp + sgn(,u)]}

However, when #z=0 the limit is infinite. Further, when
,u,<0

ee] o] _ny 4
f dyn)([R]=4wnf dy & i . (3.4)

0 0 (1 + a’e_"y)z - 1+«

Hence, when <0

lim (1R = 1) (3.5)

When u>0, « is replaced by ! and the resulting limit is

dwa

Atg). (3.6)

1+«

Now in the integral for K(x) in Eq. (2.20) the contribu-
tions from negative and positive values of wu can be added
together. The resulting integrations become elementary and
yield

{0 = 32—’"50). (3.7)
TE

When used in Eq. (2.1) this leads to the usual result for the
vacf for hard spheres [12]

mn=¢wkm<—ff). (3.8)

E

IV. OTHER STEEPLY REPULSIVE POTENTIALS

Other steeply repulsive potentials can be treated in a simi-
lar way. The hard-sphere radius is defined as before by the
Barker—Henderson formula. The specific potential enters the

calculation at the derivation of the relationship between R
and ¢. In general

B(R) = ¢ (R)R=k(R)$(R)R, (4.1)

where

$'(R) _dIn[$(R)]
#(R) ar
The advantage of introducing the function k(R) is that, in the

region where the potential is a rapidly varying function of
position, this function is slowly varying. Our result is limited

k(R) = (4.2)
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to steeply repulsive potentials for which the function k(R) is
slowly varying. In this general case the equation for the con-
servation of energy, Eq. (A4), becomes
12 2
2 ¢2 =4_E_ 4212_@' (4.3)
kK“(RYp(R) m m°R* m

Now, since one is particularly concerned to solve this equa-
tion in the neighborhood of R=0 where only the potential is
varying rapidly, one can, to leading order, replace R and k(R)
by o and k(o) respectively, except within the potential and
its derivatives, Eq. (4.3) then becomes

§F _4E_AF 4¢

() (R) m  mPa?
A comparison of this equation with Eq. (A4) shows that the
effect of using different SRPs is to replace the steepness
parameter n by the steepness parameter ok(o). The final re-
sult for the memory function is therefore unchanged except

that the appropriate steepness parameter replaces n. As an
example consider the repulsive exponential potential

@(r) = explr(o—r)].

for ko very large. In this case

k(R) = k,

(4.4)

(4.5)

and is actually constant. The steepness parameter is then xo
and this replaces n in the formulas given in Egs.
(2.17)—-(2.20) for the memory function.

V. RESULTS AND DISCUSSION

In order to test the approximations made in the previous
sections we have compared results for the memory function
computed from Eq. (2.17) to Eq. (2.20) with results from
Molecular Dynamics simulation of the same fluid at the same
state point. The memory function was computed by numeri-
cal integration of the integrodifferential Eq. (3.2.7) given on
page 109 in Ref. [4].

{0 =Cp(0) - J dr' {(t—1")ydt'), (5.1)
0

where Cp(1) is the force autocorrelation function (FACF) and
£(0)=Cg(0). Both Cg(t) and the velocity autocorrelation
function, ¢f(t) are computed directly in the Molecular Dy-
namics simulation. These results are likely to be more reli-
able at short times rather than long ones.

We used units in which m=0=1 and selected states for
which kzT=1. The effect of this is that {(r) is measured in
units of kzT/0> and time is measured in units of
VW. We report the results for five different samples
labeled A-E and with values of the parameters n and the
packing fraction, 7 as given in Table I. For further details of
the Molecular Dynamics simulations see for example Ref.
[11]. In Figs. 1-3 we compare the results of the theory with
those calculated from simulation. In all the figures the sub-
scripts A-E refer to the different simulations while the sub-
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TABLE 1. The values of the parameters used in the various
simulations. The parameter 7 is the index occurring in the potential
and packing fraction. 7=mpo /6 is the packing fraction. n is the
exponent for the potential defined in Eq. (2.8). The simulations used
N=500 particles and were carried out at a temperature kg7/e=1.

MD system n n
A 72 0.45
B 72 0.35
C 72 0.29
D 144 0.44
E 144 0.30

script T refers to the theory. The theory depends upon the
cavity function and for that we use the Carnahan—Starling
formula [20].

In Fig. 1 we compare the raw memory function as derived
from simulation A plotted as a function of the time with the
results of the present theory. In Figs. 2 and 3 we compare the
“normalized” dimensionless function K(x) as a function of
the dimensionless variable x. Figure 2 is for the cases with
n=72 while Fig. 3 is for n=144. According to the theory all
the curves in Fig. 2 and 3 should overlap. In fact they agree
very well for small times until x ~4 during which period the
memory function falls by a factor of about 100. According to
our interpretation this is the time of about four times the
duration of the binary collision and probably beyond the ra-
dius of convergence of a Taylor expansion, so that micro-
scopically it is reasonably long. In Fig. 2 the curves from the
theory and from the simulation B overlap and one cannot
discriminate between them. After the “time” x~4 the curves
drift apart; the memory function derived from simulation
eventually becomes negative, whereas, as pointed out in Sec.
IT the theoretical result remains positive for all times. At
present we do not know whether this difference is due to
shortcomings of the theory or limitations of the derivation
from simulation or perhaps both.

VI. CONCLUSION

As we pointed out in the Introduction, Dufty and Ernst
[3], apparently starting from the same physical assumptions,

4
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Ly 10 = \ -
1
0.1

0 0.02 004 006 008 0.1
t

FIG. 1. A plot of the memory function, {(7), as a function of
time. Z(r) is measured in units of kzT/0” and time is measured in
units of +/(ma?/kyT). The subscript A refers to simulation A with
parameters as given in the table. The subscript T refers to the result
calculated from Egs. (2.17)-(2.20).
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FIG. 2. A plot of the scaled function, K(x), defined from the
simulations by the method referred to in Sec. V and by Egs. (2.20)
for the theory. All these cases have n=72. The subscripts A, B, and
C refer to simulations A, B, and C, with parameters as given in the
table. Both K(x) and x are dimensionless.

have derived scaling formulas for the VACF and FACF at
short times in the hard sphere limit. There should be a rela-
tionship between their scaling functions and our scaling
function, K(x), but we have not yet established this. They
claim that their results are asymptotically exact in the hard
sphere limit of infinite n, and they certainly agree very well
with data for Molecular Dynamics (MD) simulations using
n=1152 (see Ref. [3]). Our comparison with simulation sug-
gests that for the memory function the validity extends down
to at least n=72. Further work clearly needs to be carried
out to establish the domain of applicability of these various
approaches.

In summary, on the assumption that binary collisions are
the dominant scattering process, we have derived a closed
explicit and tractable formula for the velocity autocorrelation
function memory function for a fluid of molecules interact-
ing through a steeply repulsive potential. This result reduces
to that of Enskog in the limit of hard spheres and is a gen-
eralization of his result. It has been shown that the final
expression agrees with that derived from Molecular Dynam-
ics simulation of steeply repulsive particles for short times.
Systems with interaction potentials of the kind studied here
are more relevant to colloidal systems. Although such poten-
tials are not realistic for simple molecular liquids, there is a
dearth of potential forms for which accurate results can be
derived. In the absence of more realistic systems Enskog’s
theory has proved to be a useful guide in the past. Because of
the more realistic systems studied in this paper there is some
expectation that the new results presented here are simple
enough to prove helpful in future studies.

10 T T Ty
L e i G B | (RERE K00]3
el R —K_ (X 1
Z o1 N aal ¥
- 3
DA
0.01 N

"".

0.001 L
0 2 x 4 6

FIG. 3. The notation is the same as for Fig. 2. These cases have
n=144. The subscripts D and E refer to simulations D and E, with
parameters as given in the table.
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APPENDIX

Here we outline the solution of the equations of motion.
In this analysis r, p are the initial values of the relative
positions and momenta of the two molecules and we denote
by R the separation r(z) at the later time ¢. We require only
the conservation equations for the angular momentum and
the energy. Together they yield the single equation for R,

2 2
ﬂ@#+4l>+am=Ezﬁ+¢m. (A1)
m

4 m>R?

In this equation [ is the conserved angular momentum given
by

(A2)

To solve Eq. (Al) for R(r) we exploit the fact that the
potential is steeply rising and repulsive. In that case accord-
ing to our previous work [11] the gradient of the pair distri-
bution function which appears in the integrand of Eq. (2.2)
has a narrow peak when r,R ~ o, the width of the peak being
proportional to o/n. Furthermore nearly all the scattering
takes place within a region where R~ o, indeed R—o
~ a/n. However, although R varies little in the integrand the
potential can and does vary between 0 and o. We exploit
these features of the problem to solve Eq. (A1) analytically.

We begin by changing the dependent variable to ¢ and
use the fact that

[=pR sin 6.

. R o\
WER

2\ % #R (A3)

n
R

to substitute for R in Eq. (A1). At the same time we approxi-
mate by replacing R by o. The result is
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(W-¢).

S\ 2 >
(gg 4E 4P 44 "

_4E 4
ne

“m om0 m m
This equation can be integrated to relate the value of ¢ at
time ¢, namely ¢(R), to that at the initial time, ¢(r), and,
after some reordering, yields

1-\1-¢R/W 1-\1=¢(r)/W
1+V1=dR/W  1+1 = ()W

where y=2n\W/mo>.

The sign of the exponent depends on whether the mol-
ecules are initially approaching each other or not. Note that
when the sign is negative, ¢(R) decreases to zero with time
and the molecules are separating. Similarly when the sign is
positive ¢(R) increases with time and the molecules are ap-
proaching. Initially the relative radial momentum of the mol-
ecules is

exp(xyt), (AS5)

p.-r/r=pcos 0=pu,

and if this is positive the molecules are separating initially
and they continue to separate thereafter. Some straightfor-
ward but tedious manipulation shows that in all cases the
result can be written

d(R)  4exp{— At +1,sgn(cos O)]}
W (1+exp{=lr+ 1, sgn(cos O)1)*
where ¢, is the time when the molecules are at their closest

distance of approach. It is given by

VW =W = ¢(r)

\r’W+ VW = ¢(r) -

(A6)

exp(= ¥,,) = (A7)
The sign in Eq. (A6) takes care of the fact that if the mol-
ecules are separating initially their closest distance of ap-
proach was in the past (before t=0).
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